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Estimating the Solutions of the Boltzmann Equation
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We discuss some possible estimates of the solutions of the Boltzmann equation, which
might permit a progress in the theory of existence of weak solutions.
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1. INTRODUCTION

It seems rather clear that in order to achieve some progress in the study of the initial
value problem for the nonlinear Boltzmann equation and prove that the typical
solutions have more properties that those proved in the well-known theorem by
DiPerna and Lions,(1) more a priori estimates are needed. When the solution
depends on just one space coordinate, these are available as shown in a previous
paper,(2) where the solution is shown to be a weak one without any need for
renormalization with the consequence that conservation of energy holds.

In this paper we shall illustrate a technique leading to new estimates. For the
sake of generality we shall consider the Boltzmann equation(3) in Rn

∂t f + ξ · ∂x f = Q( f, f ) (1.1)

where Q( f, f )(x, ξ, t) is the quadratic collision term. We shall not need the explicit
form of the collision term, but only its property expressed by the conservation laws.
In fact, we want to obtain estimates for the quadratic collision integral; a way to
make progress in this direction seems to be offered by a study of the quadratic
estimates following from the linear conservation equations that do not depend on
the details of the right hand side of the equation.

The aim of this paper is to provide some simple results which might turn
out to be a prerequisite for further progress in the field. The plan of the paper
is as follows: Sec. 2 contains three basic lemmas, which, in the author’s opinion,
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should be the starting point of a possible progress; Sec. 3 discusses a possible
exploitation of the lemmas by an interesting connection between the theory of the
Boltzmann equation and the theory of Newtonian potential, which leads to the
desired estimate, unfortunately, just in the case of a solution depending on a space
coordinate, when the matter has been previously clarified [Ce]2; Sec. 4 considers
a possible role of the balance of angular momentum, which is meaningless in the
case of one-dimensional solutions; Sec. 5 contains a few concluding remarks.

In order to appreciate the spirit of the present paper, the reader should keep
in mind that the author has avoided following the style of Gauss, who, according
to Abel, ‘is like the fox, who effaces his tracks in the sand with his tail’. Rather,
we have tried to make the presentation as naive as possible, in order to stimulate
further thinking about the subject.

2. THE BASIC LEMMAS

In this section we want to study a few estimates for the solutions of the
Boltzmann equation. We introduce the notation dµ = dξdηdxdy and start with
the following.

Lemma 1. Let f (x, ξ, t) be a (renormalized) solution of the Boltzmann equa-
tion in Rn depending on m space variables (m ≤ n). Assume the integral∫

f (x, ξ, t) f (y, η, t)g(x − y)dµ exists for some function g and any t ∈ R+. Then
the integral

∫ t
0

∫
f (y, ξ, t ′) f (x, η, t ′)(ξ − η) · ∂x g(x − y)dµdt ′ also exists. The

derivative is to be considered distributionally if needed.

To prove the lemma, we remark that, because of mass conservation(3):∫
ξ · ∂x f (x, ξ, t)dξ = −

∫
∂t f (x, ξ, t)dξ (2.1)

and changing x in to y ξ into η:∫
η · ∂y f (y, η, t)dη = −

∫
∂t f (y, η, t)dη (2.2)

Let us first multiply the first equation by f (y, η, t)g(x − y) and integrate the result
with respect to η, x, y, t and add to this the result of the same operation on the
second equation (with ξ in place of η and x in place of y). We obtain by partially
integrating in the left hand side∫ t

0

∫
f (y, η, t ′) f (x, ξ, t ′)(ξ − η) · ∂x g(x − y)dµdt ′

=
∫

f (x, ξ, t) f (y, η, t)g(x − t)dµ −
∫

f (x, ξ, 0) f (y, η, 0)g(x − y)dµ (2.3)

and the result follows.
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We now want to prove

Lemma 2. Let f (x, η, t) be a (renormalized) solution of the Boltzmann equa-
tion in Rn depending on m space variables (m ≤ n). Assume the integral∫

f (x, ξ, t) f (y, η, t)(ξ − η) · v(x − y)dµ to be bounded for the some function
vector-valued v and any t ∈ R+. Then the integral

∫ t
0

∫
f (x, ξ, t ′) f (y, η, t ′)(ξ −

η) · ∂x [(ξ − η) · v(x − y)]dµdt ′ also exists. The derivative is to be considered
distributionally if needed.

The proof of this lemma is similar to the previous one. We take the momentum
conservation (3) minus mass conservation multiplied by η:

∫
(ξ − η)ξ · ∂x f (x, ξ, t)dξ = −

∫
(ξ − η)∂t f (x, ξ, t)dξ (2.4)

and changing x in y, ξ into η:

∫
(η − ξ )η · ∂y f (x, η, t)dη = −

∫
(η − ξ )∂t f (y, η, t)dη· (2.5)

Let us scalarly multiply the first equation by f (y, η, t)v(x − y) and integrate the
result with respect to η and y and add to this the result of the same operation on the
second equation (with ξ in place of η and x in place of y). We obtain by partially
integrating in the left hand side

∫ t

0

∫
f (y, η, t ′) f (x, ξ, t ′)(ξ − η) · ∂x [(ξ − η) · v(x − y)]dµdt ′

=
∫

f (x, ξ, t) f (y, η, t)(ξ − η) · v(x − y)dµ

−
∫

f (x, ξ, 0) f (y, η, 0)(ξ − η) · v(x − y)dµ (2.6)

and the result follows.
We can also combine the two lemmas to yield

Lemma 3. Let f (x, ξ, t) be a (renormalized) solution of the Boltzmann
equation in Rn depending on m space variables (m ≤ n). Assume the inte-
gral

∫
f (x, ξ, t) f (y, η, t)g(x − y)dµ exists for some function g and any t ∈

R+. Then the integral
∫ t

0 (t − t ′) f (x, ξ, t ′) f (y, η, t ′)(ξ − η) · ∂x [(ξ − η) · ∂x g(x −
y)]dµdt ′ exists finite. The derivative is to be considered distributionally if needed.
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To prove the lemma it is sufficient to apply Lemmas 1 and 2 with v =
∂x g(x − y). This yields the existence of

∫ t

0

∫ t ′

0

∫
f (x, ξ, t ′) f (y, η, t ′)(ξ − η) · ∂x [(ξ − η) · ∂x g(x − y)]dµdt ′ dt ′′

=
∫ t

0

∫
(t − t ′) f (x, ξ, t ′) f (y − η, t ′)(ξ − η) · ∂x [(ξ − η) · ∂x g(x − y)]dµdt ′

(2.7)

3. HOW TO EXPLOIT THE LEMMAS

In this section we examine the role that the lemmas proved in the previous
section may have in order to obtain useful estimates. One can start from, say, a
bounded kernel with singular derivatives and end up with an estimate involving
a more singular kernel. The ideal result would be to end up with a delta function
because then we would obtain a significant estimate for the collision term. This is
beautifully exemplified by solutions depending on just one space variable (m = 1);
by taking g = |x − y| we have an estimate of the kind we are looking for. This
kind of result was exploited in the previous paper.

Things prove much harder in more dimensions (m > 1). An obvious
idea would be to take g = gm , where gm is the usual Newtonian potential
(= (2 − m)−1 |x − y|2−m, if m �= 2; = log |x − y| if m = 2). Then if ρ = ∫

f dv

and
∫

ρ(x, t)ρ(y, t)gm(|x − y|) exist finite, then the collision term is (weakly) in
L1, and f is a weak solution. (The case m = 1 is the case alluded to before).

Let us see what happens for m > 1. Let us denote the components of x and
ξ by xi anf ξi . The kernel Ki j = ∂xi∂x j gm(x − y)(m > 1) is made up of a Dirac
delta and a distribution of the kind “principal part” (for m = 1 this second part is
absent).

To be precise let us denote by K̃i j the pointwise derivatives. defined for
x �= y:

K̃i j (x − y) = [x − y]−m

(
δi j − m

(x − y)i (x − y) j

|x − y|2
)

, (3.1)

where δi j the Kronecker symbol. The following equality holds:
∫

Ki j (x − y)φ(x)dx = P
∫

φ(x)K̃i j (x − y)dx + ωmφ(y)

= lim
ε→0

∫
|x−y|>ε

φ(x)K̃i j (x − y)dx + ωmφ(y) (3.2)
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where ωm is the area of the unit sphere in m dimensions and P in front of an
integral denotes that the Cauchy principal part must be considered.

Using the lemmas of the previous sections we can prove that, if the integral∫
ρ(x, t)ρ(y, t)gm(|x − y|)dxdy exists finite, then

∫ t

0

∫
(t − t ′) f (x, ξ ) f (y, η)(ξi − ηi )(ξ j − η j )Ki j (x − y)dµdt ′ (3.3)

(sum over i and j from 1 to m) exists finite. But the question is: does also

∫ t

0

∫
(t − t ′) f (x, ξ ) f (x, η)|ξ − η|2dxdξdηdt ′ (3.4)

exist finite? (Remark: the result is trivial for m = 1). A positive answer seems
unlikely for m > 1. In this case we must enquire about other possible estimates.
A possibility might be offered by the balance of angular momentum; this will be
discussed in the next section.

Before ending this section, however, we must remark that even the assumption
that the integral

∫
ρ(x, t)ρ(y, t)gm(|x − y|)dxdy exists finite is far from trivial,

though more innocent that the analogous assumption on

∫ t

0

∫
(t − t ′) f (x, ξ ) f (y, η)(ξi − ηi )(ξ j − η j )Ki j (x − y)dµdt ′. (3.5)

We just remark that a solution of the Boltzmann equation is certainly more regular
than usually assumed. Without resorting to other considerations and just using the
material of this paper, e.g. Lemma 3 with K (x − y) = |x1 − y1|, we can prove
that

∫ l

0

∫
(t − t ′) f (x1, x2, . . . , xm, ξ )

f (x1, y2, . . . , ym, η)(ξ1 − η1)2dy2 . . . dxmdξdηdt ′

where it is to be remarked that the first argument is the same in the two functions
and the integral is with respect to 2m − 1 rather than 2m space coordinates.

4. ANGULAR MOMENTUM

The balance of angular momentum follows from the Boltzmann equation in
the following form:

∫
∂t (xiξk − xkξi ) f (x, ξ, t)dξ = −

∫
ξ · ∂x (xiξk − xkξi )) f (x, ξ, t)dξ (4.1)



1496 Cercignani

For later use it is convenient to introduce two other vectors y and η and rewrite
this equation in the following, more cumbersome form:∫

∂t [(xi − yi )(ξk − ηk) − (xk − yk)(ξi − ηi )] f (x, ξ, t)dξ

= −
∫

ξ · ∂x [(xi − yi )(ξk − ηk) − (xk − yk)(ξi − ηi )] f (x, ξ, t)dξ

−
∫

(ξiηk − ξkηi ) f (x, ξ, t)dξ (4.2)

and, interchanging x and y, ξ and η:∫
∂t [(xi − yi )(ξk − ηk) − (xk − yk)(ξi − ηi )] f (x, η, t)dη

= −
∫

η · ∂x [(xi − yi )(ξk − ηk) − (xk − yk)(ξi − ηi )] f (x, η, t)dη

−
∫

(ξkηi − ξiηk) f (x, ξ, t)dξ (4.3)

Now, let H (|x − y|) be another kernel. If we multiply the first equation by
xi yk f (y, η, t)H (|x − y|) and integrate the result with respect to η and y, the
second by xi yk f (x, ξ, t)H (|x − y|) and integrate the result with respect to ξ and
x (sum from 1 to m on the indices i and k), and finally add the results, we obtain:∫

[x · (x − y)y · (ξ − η) − y · (x − y)x · (ξ − η)]

f (x, ξ, t) f (x, ξ, t)H (|x − y|)dµ

−
∫

[x · (x − y)y · (ξ − η) − y · (x − y)x · (ξ − η)] f (x, ξ, 0)

f (x, η, 0)H (|x − y|)dµ

=
∫

[x · (x − y)y · (ξ − η) − y · (x − y)x · (ξ − η)] f (x, ξ, t ′)

f (x, ξ, t ′)(ξ − η) · ∂x H (|x − y|)dµdt ′ (4.4)

because

−(xiξi ykηk − ykξk xiηi ) − (ykξk xiηi − xiξi ykηk) = 0

Let us remark that the terms arising from the differentiation of the factor xi yk turn
out to cancel because they contain the factor

y · (ξ − η) + (x − y) · ξ − (x − y) · η − (ξ − η) · x

= −(x − y) · (ξ − η) + (x − y) · (ξ − η) = 0 (4.5)
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Let us also remark that this is one of infinitely many relations that we might obtain.
In fact, if a is an arbitrary constant vector, instead of multiplying the first equation
by xi yk f (x, η, t)H (|x − y|), the second by xi yk f (x, ξ, t)H (|x − y|), we might
replace the factor xi yk by (xi + ai )(yk + ak). If we do this, the factor in square
brackets contains the following additional terms:

a · (x − y)y · (ξ − η) − a · (x − y)x · (ξ − η) + a · (x − y)a · (ξ − η)

−a · (x − y)a · (ξ − η) = a · (x − y)y · (ξ − η)

−a · (x − y)x · (ξ − η) = −a · (x − y)(x − y) · (ξ − η). (4.6)

Thus, since a is arbitrary, the following relation must also be true:∫
(x − y)(x − y) · (ξ − η) f (x, ξ, t) f (x, η, t)H (|x − y|)dµ

−
∫

(x − y)(x − y) · (ξ − η) f (x, ξ, 0) f (x, η, 0)H (|x − y|)dµ

=
∫

(x − y)(x − y) · (ξ − η) f (x, ξ, t ′)

f (x, ξ, t ′)(ξ − η) · ∂x H (|x − y|)dµdt ′ (4.7)

However, it is by no means evident that these further relations may help in answer-
ing the question raised in the previous section.

5. CONCLUDING REMARKS

We have discussed a method to obtain new estimates for the solutions of the
Boltzmann equation. Although the progress achieved is not so great, the method
recommends itself because it produces the desired result when the solution depends
on just one space coordinate. Hopefully, some further ideas or some progress on
the technical question raised in Sec. 3 will lead to a significant new result.
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